
Building a Search Engine to Drive Problem-Based Learning

Steven Bird
Department of Computer Science

and Software Engineering
University of Melbourne, VIC 3010, Australia

sb@csse.unimelb.edu.au

James R. Curran
School of Information Technologies

University of Sydney, NSW 2006, Australia

james@it.usyd.edu.au

ABSTRACT
Search engines pervade the digital world, mediating most
access to information instantaneously. We have found that
students can build search engine components, and even
entire search engines, in the context of problem-based learn-
ing in introductory and intermediate computer science courses.
The courses cover a broad range of topics in algorithms,
data structures, and web design, with a heavy emphasis on
programming. Additionally, the internet is coupled with
the syllabus at many places, from web design and HTML
to graph algorithms and pattern matching. This connection
enlivens the discussion of otherwise dry topics like searching,
sorting, indexing and hashing. Moreover, the challenge of
web-scale computing motivates the continuing students in
their later study of formal topics like algorithmic complexity,
while non-continuing students acquire transferable analyti-
cal skills. We report on the experience in search engine
projects for driving problem-based learning in computer sci-
ence courses, for both high school and university students.
Our experience shows that such projects are effective in both
introductory and intermediate courses, and readily encom-
pass student groups with diverse programming abilities.

Categories and Subject Descriptors
K 3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Algorithms, Data Structures, Digraphs

Keywords
Python, Web, Google

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRAFT Please do not cite verbatim
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
Simple demonstrations quickly convince students that

searching and sorting take longer as input size grows (Fig-
ure 1(a)). Yet web-search latency has stayed constant
despite the explosive growth of the web (Figure 1(b)). What
is going on here?

Most computer science students take web search engines
for granted. They never experienced the internet prior
to search engines, and have seldom pondered how search
engines work. Accordingly, the graphs in Figure 1 are a
source of cognitive dissonance, grabbing students’ attention
and provoking them to wonder if they can apply their pre-
sumed computational know-how to explain this real-world
observation. Pursuing this further, we conceive of a larger
challenge, one which can drive students to learn many fun-
damentals of computer science, namely to implement some
search engine components themselves, or even to build an
entire search engine. The apparent magic of search engines
disappears, but students are left in control of a “deeper
magic.” Applying computer science concepts and methods,
they build simple software components, then marvel when
many interlocking components work in concert to produce
sophisticated and informative behaviour. The experience
of delivering a whole system which is more than the sum
of its parts turns out to deliver something else as well: a
fundamental grasp of core topics in computer science.

Of course, the value of integrating the web into computer
science courses is often noted (e.g. [4]). However, in most
introductory courses the web serves as a secondary source
of information about course content, rather than a primary
source of raw data for student projects. We have found
that high school students are excited by the novelty of writ-
ing programs that venture out onto the web. These pro-
grams access remote sites, and may behave unpredictably
as the sites change. Tasks like extracting URLs, following

tim
e

size
(a) Phonebook

tim
e

size
(b) Google

Figure 1: Search Time as Data Size Grows

QUERY
ANALYZER

PROCESSOR
QUERY

FORM
HTML

HTML

INDEX
SPIDER

seed URLs;
whitelist

stemmer;
stopwords

correction
spelling

ranking
snippets

INDEXER

RESULT
PROCESSOR

WEB

Figure 2: Search Engine Architecture

hyperlinks, indexing content, processing queries, and rank-
ing search results all require students to grasp core concepts
in computer science. Putting everything together gives stu-
dents their first authentic experience of a software develop-
ment team and of multi-component system-building. Sim-
ilarly, we found that second-year university students were
highly motivated to learn about algorithms and data struc-
tures thanks to two web-inspired projects: implementing
Google PageRank [2] and spelling correction. A far cry from
clicking hyperlinks, the use of the web in these problem-
based learning environments was fundamental to achieving
the desired educational outcomes.

In this paper we report on experiences in the use of web
search engine projects to drive problem-based learning in
computer science courses. This involves two groups: high-
school students attending a week-long intensive summer
school at the University of Sydney, and second-year students
taking an introductory algorithms class at the University
of Melbourne. Both courses shared three goals: (i) broad
coverage of computer science with an emphasis on program-
ming; (ii) integration of the web into the syllabus; and (iii)
stimulation of both continuing and non-continuing students
alike. Subsidiary goals were to attract (or retain) computer
science students, and to explore problem-based learning [1]
as a means of addressing diverse student populations.

This paper is organised as follows. We begin by outlining
the structure of a simple search engine (§2). The following
two sections report on our experience teaching introductory
courses at the Universities of Sydney (§3) and Melbourne
(§4), and provide objective and subjective evaluations.

2. ANATOMY OF A SEARCH ENGINE
The core of a search engine is a large inverted index, iden-

tifying all pages where a given word appears. Users access
this index via a query interface, then a query processor looks
up their search term(s) in the index and ranks the results
before delivering them back to the user. Building the index
itself is a laborious process. A program – aptly called a
spider – periodically crawls along the hyperlinks of the web,
finding documents to be indexed. See Figure 2 for a diagram
showing how these components fit together. If the basic
idea is simple, the possible additions are numerous and vary
widely in complexity. Some popular additions are indicated

in grey in Figure 2. We consider these components in turn
below, along with the corresponding theoretical concepts
plus an indication of the level of difficulty for implemen-
tation using asterisks (*=easy, ***=difficult).

Spider∗∗∗: navigates the web to collect web pages and
extract text content; Concepts: queues, breadth-first
search in directed graphs, regular expressions for extract-
ing URLs and stripping HTML markup.

Seed URLs and Whitelist∗: lists of URLs defining the start-
ing URLs and the websites to be crawled. Concepts:
site topology, research on a topic area.

Indexer∗∗: tokenizes the text of each page, normalizes
the words, and stores them in an associative array
which maps words to document ids; optionally removes
stopwords and performs stemming; Concepts: regular
expressions, associative arrays, persistent storage.

Stopwords∗: a list of words optionally removed from the
input documents by the indexer, obtained by down-
loading several large text files from Project Guten-
berg,1 and identifying the most frequent words (e.g.
and, the). Concepts: tokenization, frequency count-
ing, sorting, manual post-editing.

Stemmer∗∗: strip suffixes to leave word stems (e.g. walk-
ing, walked and walks should all be indexed as walk);
Concepts: regular expressions, knowledge of English
word-formation rules.

Website∗: migrate content from an existing site, re-organizing
material and applying a new design, creating a hypo-
thetical site for hosting the search service; Concepts:
HTML, CSS, validation, web design, accessibility.

Query Analyzer and Processor∗∗: split query string into
search terms and optional operators (e.g. or, not),
optionally correct spelling errors (§4), probe index to
get candidate document ids for each query term, per-
form unions, intersections and relative complements;
Concepts: CGI processing, Boolean algebra.

Result Processing∗∗: probe index using document ids to
retrieve full URLs and document titles, and output
in HTML for rendering in a browser, optionally gen-
erating snippets from indexed documents, and option-
ally ranking using term frequency or Google PageRank

1
http://www.gutenberg.org/

(§4); Concepts: programmatic generation of HTML,
term weighting, directed graphs, breadth-first search.

Snippets∗∗∗: display text fragments showing the best doc-
ument context covering the search term(s), using an
augmented version of the index incorporating word
offsets. Concepts: positional indexing, heuristics.

Although this is a considerable list of tasks, several can
be omitted, and others can be made easier through the
provision of pseudocode. If necessary, difficult tasks such as
the spider can be provided as off-the-shelf components. Key
features of the above set are the broad coverage of computer
science topics, and the wide range of tasks geared to different
skills and different levels of programming ability.

3. SUMMER SCHOOL
UNIVERSITY OF SYDNEY

The National Computer Science School, now in its eleventh
year, is an intensive one-week residential program for some
65 final-year secondary students together with a dozen sec-
ondary teachers. It is largely staffed by volunteers – past
students donating a week of vacation – under the leadership
of the second author.

Students from across the country are selected through an
application process that includes a letter explaining their
interest in the summer school, grades, teacher reference, plus
a sample of work, such as program code or a website. Stu-
dents are highly motivated, though few have any experience
of building a system or working in a development team.

Students work in groups of fifteen, each group develop-
ing a complete search engine in the space of a week. All
programming is done in Python, which is ideal in a con-
text serving newcomers and experienced programmers, as
also noted by [6]. Individual Python modules can be devel-
oped independently, and data structures (such as the web
index) shared using Python’s shelve methods. Students use
a specially prepared Python text that emphasises features
required for search engines [3]. Programming classes are
highly interactive, and 75% of the time is spent experi-
menting with the Python interpreter projected onto a large
screen. Other lectures cover HTML, CSS and web design
(topics which had once been the sole focus of the summer
school when it was established in 1995 by Judy Kay and
Bob Kummerfeld).

On the first two days, laboratory sessions focus on learning
Python. From the third day onwards, groups split into two
sub-groups, one focussing on web design (HTML and CSS)
and one on building the back-end. This leaves about eight
programmers in each group, consisting of the technically
strongest students. The systems are presented and demon-
strated on the final day.

At the outset, the students are given a high-level descrip-
tion of the components of a search engine and their intercon-
nections, along with the skills and effort required to build
them. The members of each group volunteer to work on
different components, resulting in teams of 1–4 students.
The tutor guides the process using knowledge of the pro-
gramming aptitude of each individual, gained from observ-
ing them working on the initial Python tutorial materials.

The level of detail of the instructions is adjusted according
to the strengths of each team. The description of the tasks
is usually sufficient for the students to work out most of
the architecture of Figure 2 for themselves. Teams focus on

individual components and successively refine their under-
standing of the required inputs and outputs. Teams negoti-
ate periodically to hammer out the details of the interfaces
(i.e. each arrow in Figure 2). Frequent intensive discussions
within and between the teams clarify concepts and get clear
separation of functionality. A whiteboard is updated with
the current architecture, tasks, interfaces, and schedule.
Through all of this, the tutors play a largely non-directive
role, being continually on call to advise students on concep-
tual and practical matters.

Evaluation
During the summer school, the first author served as a
tutor for one of the groups, and periodically visited the
other groups, interviewing many students and tutors. The
tasks were pursued energetically, and the excitement of the
students was palpable. The first goal, namely broad cov-
erage of computer science with an emphasis on program-
ming, was amply met for those group members who did
programming tasks. However, this judgement is subjective
as no formal assessment was undertaken. It was notable
that students of widely differing programming ability could
pursue interesting tasks at an appropriate level of difficulty.
The web authoring tasks provided useful occupation for the
students who discovered that they were not interested in
programming. The second goal, integration of the web into
the syllabus, was also met. Finally, it was clear that both
continuining and non-continuing students were challenged
at their level of ability.

The greatest challenge for all groups was collaborating in
a team to build a multi-component system. Even the most
capable programmers had no prior experience of software
development teams or multi-component system-building.
Many of them struggled with this, and the tutors’ role was as
much social as technical. For instance, one student produced
a second spider for his team fait accompli and proceeded to
argue that it was better than the one that had already been
developed by another student. After heated debate it was
agreed that the original spider had better regular expres-
sions, while the new spider was cleaner program code, and
they were able to combine the two. Such teamwork expe-
riences provided students with a valuable insight into the
information technology industry, and were better equipped
to choose a suitable university course.

The choice of Python was critical to the success of the
summer school. Being interpreted facilitated experimenta-
tion with the language in the early part of the week, and
rapid prototyping later on. Python’s transparent syntax
made it easy for students to share code, and its lightweight
object-orientation facilitated component integration. Notably,
Python’s shelve methods were ideal for saving associative
arrays to disk, avoiding the need for explicit file I/O. Thus
the spider and indexer could be written independently, and
later integrated via a shared file on disk.

On the last day of the summer school, students completed
a survey which included questions geared to the topic of
this study: 87% said their programming ability is greatly
improved; 97% agreed that building a search engine is an
interesting way to learn about computer science; and 70%
said that their interest in doing tertiary study in computer
science has increased significantly.

INDEX

preprocessing;
Soundex

SIGNATURE
GENERATION

SIGNATURE
LOOKUP

CANDIDATE
CORRECTIONS

INPUT
WORD

sorting
edit distance;

SIGNATURE
GENERATION

WORD
LIST

RESULT
PROCESSOR

Figure 3: Spelling Correction, including Approximate String Matching

4. ALGORITHMS AND DATA STRUCTURES
UNIVERSITY OF MELBOURNE

Algorithms and Data Structures is a second-year course
in the Department of Computer Science and Software Engi-
neering at the University of Melbourne. The course covers
80% of the material in Levitin’s text [5], and Python is
used in lectures to demonstrate algorithms (often using code
downloaded from Wikisource). After identifying the most
basic operation performed by the program, such as addition
or key comparison, the code is instrumented to report the
number of times this operation is performed. This facilitates
experimentation and discussion in the class. In 2005 the
course included two C programming projects motivated by
tasks performed by web search engines: Google PageRank
and spelling correction. Both tasks involved large quantities
of realistic data, and both were incompletely specified.

PageRank: This topic was selected thanks to its poten-
tial for students to learn several graph algorithms. PageR-
ank is Google’s method for scoring the importance of web
pages, used for ranking search results.2 A hyperlink from
some page p to another page q is considered as a vote by
p in favour of q. Those pages with many incoming links
are ranked more highly, and (on the next iteration) cast
more influential votes on the importance of other pages.
The algorithm is simple enough, but requires students to
code an incidence matrix and perform computations on a
directed graph.

d = 0.85
score = [1.0, 1.0, ..., 1.0]
repeat 50:

next_score = [1-d, 1-d, ..., 1-d]
foreach page:

out_degree = count outgoing links (or target_pages)
contribution = score[page]/out_degree
foreach target_page

next_score[target_page] += d * contribution
score = next_score

In preparation for their work on PageRank, students
implemented brute-force algorithms to identify the roots of
the webgraph (pages from which all other pages are accessi-
ble), and the hubs (pages having a large number of outgoing
links). Roots and hubs are easy to identify but, as students
discovered, not a very useful source of information. The
next task was to identify the authorities using PageRank.
2
http://www.webworkshop.net/pagerank.html

The project used webgraphs of three sizes, an artificial
site with 5 pages, the department’s course advice collection
with 60 pages, and a local news and entertainment website
with over 3,000 pages. We used the w3mir utility to save
the incidence matrix of a website to a file as part of the
process of mirroring the site. Student projects were assessed
individually, and the available marks were equally divided
between the following: (i) operational program; (ii) correct
implementation; (iii) written report containing a complexity
analysis of the three algorithms.

Spelling Correction: Students had already experienced
spelling correction in the context of word processors, and
also when searching using Google. This project taught stu-
dents about string processing (Soundex), associative arrays
(the soundex index) and dynamic programming (Leven-
shtein’s algorithm), and how a linear algorithm can be used
to save work for a quadratic algorithm. The systems devel-
oped by the students were based on the architecture given
in Figure 3, described below:

Signature generation: supplied Soundex code converts a
word to a signature (e.g. giant is mapped to G530);
multiple words having similar pronunciation are mapped
to the same signature; Concepts: integrating third-
party components, string processing.

Signature lookup: probe the index using the signature
of a mis-spelled word to find candidate corrections;
Concepts: associative arrays.

Result processor: score candidates for similarity to the
input word using Levenshtein edit distance, then sort
and return the 10 most similarly spelled words; Con-
cepts: dynamic programming.

Preprocessing: collapse spelling distinctions to make up
for Soundex shortcomings (details below); Concepts:
improving performance of black-box component by
preprocessing its input; research methods for identi-
fying common mis-spellings.

Sorting: sort candidates by similarity score; Concepts:
sorting based on non-key value.

Systems were coded in C, and a major part of the task
was to implement dynamic hashing with linked-list values,
sorted using insertion sort. The Levenshtein algorithm was
provided in pseudocode, and needed to be translated into C.
The large data size (45,000 correctly spelled words) ensured

the hashing code was thoroughly tested. Students learned
how to adjust program parameters to improve performance.

The coding task was somewhat open-ended, in the sense
that students had to address shortcomings of Soundex,
e.g. pronunciations of words involving silent letters (thumb
and thum have different signatures); and transpositions
of consonants (algorithm and aglorithm have different sig-
natures). Students investigated these shortcomings and
described three problems of their own. They fixed these
problems by preprocessing the words. For example, if jiant
was considered to be a possible mis-spelling of giant, the
spelling distinction would be collapsed by preprocessing all
strings, replacing j with g (or perhaps just ji with gi), before
submitting them to soundex. This way, both spellings would
be mapped to soundex code G530. Many students agreed to
demonstrate this aspect of their system to the whole class
(90 students).

As for the first project, a third of the assessment was
based on a written report in which students discussed the
complexity of the algorithms. Students were also asked to
speculate on how they might extend the program further to
cope with three additional shortcomings:

keyboarding errors: soundex was intended for pronunci-
ation errors, not typing mistakes;

word frequency: words were ranked by edit-distance, but
common words are more likely corrections than rare
words; e.g. the input gentel would be more likely to
be a mis-spelling of the high-frequency word gentle
than the low-frequency word genteel, but edit-distance
would order genteel first;

affixes: the English lexicon is an open set, not closed as
the existence of a fixed words file might suggest; we
can easily form new words using existing prefixes and
suffixes.3

Evaluation
The most significant change in the course from previous
offerings was the use of project work inspired by search
engines. The tasks involved large data sets (e.g. a directed
graph with 3,000 nodes) enabling the students to experience
the difference between an n

3 algorithm (identifying roots)
and an n

2 algorithm (identifying hubs), and therefore appre-
ciate the significance of algorithmic complexity. Projects
were not tightly defined and somewhat open-ended. Stu-
dents seemed to enjoy the unpredictability of the programs,
whose performance and results depend on the topology of
an external website, or on the unpredictable input of mis-
spelled words.

During the project periods, students frequently complained
about the requirement to use the C programming language,
a choice imposed by the department. The most common pit-
falls in the projects were not conceptual, but due to memory
management errors. The C language is evidently too low-
level and detracts from the learning of high-level concepts
in algorithm design.

On the university administered quality-of-teaching survey,
students rated several facets of the subject on a scale of 1–5.
For the statement “I found this subject intellectually stimu-
lating” the mean score was 4.2. This compares favourably
with scores over the past four years (mean=3.4, standard

3
http://en.wikipedia.org/wiki/List_of_English_prefixes

http://en.wikipedia.org/wiki/List_of_English_suffixes

deviation=0.2). Free-text comments were positive about the
project, e.g. “project topics were well chosen/interesting”;
“projects were heaven”; “projects were challenging but not
impossible”; “projects ended up being the main motivation”.
An exception was the small number of predictable com-
plaints about the projects being insufficiently well-defined.

5. CONCLUSIONS
Many core topics in computer science are taught with the

aid of toy-sized problems using artificial data. The web is
most often cited as a secondary source of information on
course content. However, the webgraph is an interesting
data structure in its own right, a directed graph with trillions
of nodes. We have used search-engine inspired projects to
drive problem-based learning in introductory and interme-
diate computer science courses, at secondary and tertiary
level. We have found that it is possible to devise many
interesting student projects which treat the web as a primary
source of raw data. These projects were an effective way
for students to learn otherwise dry topics such as directed
graphs, dynamic programming, and algorithmic complexity.

Significantly, all students appeared to benefit from our
approach. Students not planning to major in computer
science were given an appealing snapshot of the field, expe-
riencing algorithms in an interesting context, and gaining
new understanding of the structure of the web. Students
planning to major in computer science were also well-served,
learning several graph algorithms, and gaining an apprecia-
tion for the practical importance of algorithmic complexity.
Furthermore, we found it was quite straightforward to split
the search engine project across several programming teams,
according to the abilities and interests of the students.

The cognitive dissonance of Figure 1 is not resolved. The
logarithmic growth of the internet compared to the exponen-
tial growth of Moore’s law suggests that the Google search
time should decrease over time. The real story requires an
understanding of parallel computation. Students have to
come back next year for the full answer.

6. REFERENCES
[1] D. Boud and G. E. Feletti, editors. The Challenge of

Problem-Based Learning. London: Kogan Page, 1997.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[3] J. R. Curran. Building a Python search engine. School of
Information Technologies, University of Sydney.

[4] T. Hickey, A. Kumar, L. Wilkens, A. Beiderman,
A. Mahadev, and H. Ellis. Internet-centric computing in the
CS curriculum. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education,
pages 50–51. ACM, 2002.

[5] A. Levitin. Introduction to the Design and Analysis of
Algorithms. Addison Wesley, 2003.

[6] C. Shannon. Another breadth-first approach to CS I using
Python. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, pages 248–251.
ACM, 2003.

