Adaptive In-Network Query Processing for Data-Intensive Sensor Networks

Uwe Röhm
University of Sydney
School of Information Technologies

Research Motivations

- Wireless Sensor Networks (WSNs) of growing importance
 - automatic and continuous monitoring of physical phenomena
 - e.g. structural or environmental monitoring
 - WSN can consist of hundreds of sensor nodes
- Data-Intensive Sensor Networks
 - focus on data acquisition
 - (“How to get the data out of the field?”)
 - data-centric, high-level abstraction wanted
- Sensor hardware increasingly more powerful
 - more built-in memory
 - more powerful processors
 - IEEE802.15.4 radio standard
Improved WSN Hardware

<table>
<thead>
<tr>
<th></th>
<th>Berkeley Mote</th>
<th>BTnode</th>
<th>Spec</th>
<th>Intel iMote</th>
<th>Intel iMote2 (gateways)</th>
<th>Sun SPOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>UC Berkeley; now CrossBow</td>
<td>ETH Zurich</td>
<td>UC Berkeley</td>
<td>Intel Research Berkeley</td>
<td>Intel Research Berkeley</td>
<td>Sun Microsystems</td>
</tr>
<tr>
<td>CPU</td>
<td>4 MHz 8 bit Amtel</td>
<td>7.3 MHz ATMEL Mega</td>
<td>4-8MHz AVR-like RISCcore</td>
<td>12-18 MHz ARM 7TDMI</td>
<td>13-416 MHz 32bit XScale</td>
<td>180 MHz 32bit ARM 9</td>
</tr>
<tr>
<td>RAM</td>
<td>4 K RAM 128 K Prog Flash 512 K Data Flash</td>
<td>4 K EEPROM 128 K Flash</td>
<td>3 K RAM</td>
<td>64 K RAM 512 K Flash</td>
<td>32 M SDRAM 32 M Flash</td>
<td>512 K RAM 4 M Flash</td>
</tr>
<tr>
<td>Radio</td>
<td>40 kB Radio</td>
<td>Bluetooth</td>
<td>FSK radio…</td>
<td>Bluetooth 1.1 ~30m range</td>
<td>IEEE 802.15.4 (ZigBee)</td>
<td>IEEE 802.15.4</td>
</tr>
<tr>
<td>OS</td>
<td>TinyOS own</td>
<td>TinyOS</td>
<td>TinyOS</td>
<td>TinyOS / Linux</td>
<td>Squawk (J2ME)</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>AA battery pack</td>
<td></td>
<td>1 CR2 battery</td>
<td></td>
<td>750 mAh LiON</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>active: ~24 mW sleep: ~45 uW</td>
<td>active: 285 mW idle: 50 mW</td>
<td>peak: 3 mW idle: 3 uW</td>
<td>active: ~120mW idle: ~1 mW</td>
<td>deep sleep: ~32uA</td>
<td></td>
</tr>
</tbody>
</table>

"Data From The Field" Workshop, University of Sydney, 24 May 2007 - (U. Röhm)

Resource Constraints in Sensor Networks

- **Processing Power:** started very low, becoming better
- **Memory:** 512KB already, megabytes in the future
- **Radio:** limited bandwidth and reliability
- **Battery:** very limited
 - typically running on AA batteries
- **Energy Efficiency of highest priority**
 - Priority 1: Minimise Communication / Radio Usage
 - Power to transmit 1 bit = 100s of instructions
 - Priority 2: Minimise Sensor Usage
 - some sensors have very high activation costs
 - Priority 3: Minimise CPU usage
 - maximize sleep periods

"Data From The Field" Workshop, University of Sydney, 24 May 2007 - (U. Röhm)
General Research Goals

- Hardware progress allows for more advanced processing
 - => true **in-network** data processing
 - such as distributed event detection or data clustering
 - (going beyond simple ‘sense - collect - deliver’ tasks)

- Resources are scared and precious in WSNs
 - => need good resource utilization & adaptiveness to changes
 - => **resource awareness**

- To be real successful, WSNs need high-level interfaces
 - Declarative Query Interface
 - => **data abstraction layer**
 - Virtual Machine Technology
 - => small code sizes, rapid prototyping

Sun™ Small Programmable Object Technology

- Sun SPOT devices
 - battery board
 - 750mAh Li-Ion battery
 - processor board
 - 180 MHz ARM 9
 - 512 K RAM / 4M Flash
 - 802.15.4 radio
 - sensor board
 - temp, light, accelerometer, …

- Java VM on the bare metal
 - Squawk JVM (J2ME)
 - small program code
 - rapid prototyping
SSDQP - Sun SPOT Distributed Query Processor

- Classic WSN Architecture
 - query engine on each node
 - query execution
 - sensing, filtering, communication
 - in-network aggregation
 - routing tree connecting to base station
 - control system on the host
 - query parsing and optimising
 - query dissemination
 - GUI client
 - user interface
 - result visualisation

SSDQP Core Features

- Data-Program Independence
 - Data abstraction: virtual relation; horizontally partitioned
 - SQL-like queries
- Multi-Tasking-/Querying
 - WSN shared by several users
- Time Synchronization
 - query engine is time-triggered
- Adaptive In-Network Processing
- Optimised Messaging
- Graphical UI
Data Independence via SSDQP

- SQL data abstraction of sensor network
 - Virtual relation that is horizontally partitioned over all nodes
 - Meta-attributes
 - (ID, time, parent, ...)
 - Resource attributes
 - (battery level, free memory, CPU load)
 - Sensors
 - (light, temperature, x/y/z accelerometer, ...)
 - Actuators
 - (currently read-only)
 - (LEDs, buttons)

- Acquisitional-SQL query language

  ```sql
  SELECT attributes
  FROM sensors [, buffer]
  WHERE condition
  START AT timestamp
  PERIOD duration
  RUNCOUNT count
  ```

Distributed Query Execution

- Client
 - Query entered via GUI

- Host
 - compiles query into `query execution plan`
 - disseminates query plan into network

- Nodes
 - instantiate new `query task`; scheduled for specified start time
 - periodically execute according to query sample interval specification
 - sensing, processing and communication are separate tasks
 - Sharing of sensor readings between multiple queries
 - Minimising sensor activation and communication
Waking Window Optimisation

- **TinyDB**
 - Waking window length := EPOCH length \(/ d \)
 - \(d \) : depth of the routing tree
 - All nodes have the same waking window length
 - Length typically overestimated, i.e. it is longer than needed

- **SSDQP**
 - Waking window length := waiting for all children to answer
 - Synchronised sense on all nodes
 - Upper nodes have longer waking period that depends on subtree
 - Overall shorter communication length

Example: \(d = 3 \)

In-Network Data Clustering

- **Goal:** true in-network data processing
 - instead of collecting all raw data from sensors & then process at host

- **ERA-Cluster Algorithm**
 - own resource-aware online data clustering algorithm for WSNs
 - provides distance-based clustering of sensor readings
 - assign sensor measurement to nearest existing cluster
 - updated with weighted average of new value and existing cluster
 - if no cluster within given distance threshold, start new cluster
 - result is \{ (centroid,weight) \} of clustered sensor readings
 - Example:
 - SELECT *
 FROM CLUSTER('temperature', threshold)
 - keeps internal state
In-Network Resource-Awareness

- Goal: adaptive, resource-aware processing
- Approach: resource monitoring framework
 - Self-reflective resource attributes (memory, battery, load)
 - resource monitor task on each node
- Adaptive clustering algorithm:
 - if battery level exceeds a preset threshold:
 - frequency of sending/receiving data is reduced
 - possible because of dynamic scheduler
 - if free-memory exceeds a preset threshold:
 - discouragement of new clusters formation is applied through a distance threshold approach
 - in addition continuous release of inactive clusters
 - If CPU load is high:
 - randomization of the result space is applied

Some Evaluation Results

- Evaluation of validity of the approach in terms of resource-awareness and accuracy of the adaptive mining algorithm
 -ERA-Cluster can effectively adapt to resource availability while maintaining acceptable level of accuracy [CIDM2007]
Performance Effect of High Transmission Rates

- Problem:
 - The higher the packet rate
 - The lower the packet success rate (e.g. because of network collisions)
 - The higher the time delay
 - The higher the energy consumption
- Hence overall WSN goal:
 - Find appropriate threshold of good packet rate that balances errors, delay and energy consumption.

Solution: Asynchronous Data Acquisition

- Multi-tasking allows for de-coupled processing and communication:
 - E.g. clustering and querying can be scheduled with different frequencies
- Clustering task
 - Clusters current sensor readings
 - State kept locally on node
 - Into local buffer

- Query task
 - Retrieves data clustering results from storage point either periodically or on-demand

SELECT *
INTO TempClusters
FROM CLUSTER(temp,t)
PERIOD 1s
RUNCOUNT 10000

SELECT *
FROM TempClusters
PERIOD 60 s
RUNCOUNT 60
Comparison to Related Work

- **TinyDB**
 - The ‘golden standard’ of acquisitional query processors
 - Compiled down to machine code running on TinyOS
 - Very limited multiple-queries, no dynamic adaptiveness
 - LIFETIME clause statically pre-computed at host

- **SwissQM**
 - Own virtual machine, merging query- and sensor-specific opcodes with JVM opcodes
 - Queries compiled into VM code and then disseminated and executed
 - Multiple queries (apparently?)
 - No declarative adaptiveness, not time triggered

- **SSDQP**
 - Running on JVM, but using standard ACQP approach for queries
 - Multiple queries, time triggered, dynamic adaptiveness

Data From The Field Workshop, University of Sydney, 24 May 2007 - (U. Röhm)

Conclusions and Outlook

- Next generation of more powerful sensor nodes allows for complex in-network data processing in WSNs
- **SSDQP**: a powerful platform for distributed data acquisition
 - data abstraction layer
 - sharing of network via multiple queries / tasks
 - resource-awareness / dynamic adaptivity of tasks
 - allows for decoupling sensing and data acquisition

- Ongoing Work:
 - Next slide
WSN Research @SIT

- Researchers:
 - Selvakenndey Selvadurai, Bernhard Scholz, Uwe Roehm, Mohamed Gaber
- Many special thanks to all our project students who developed the prototype systems
 - Tim Dawborn
 - Raymes Khoury
 - Edmund Tse
 - Quincy Tse
 - Duc Nhan Phung
- This work is supported by
 - Australian Research Council (ARC) under grant ARC DP0664782
 - Sun™ Microsystems Laboratories

"Data From The Field" Workshop, University of Sydney, 24 May 2007 - (U. Röhm)

Overview of WSN Projects @SIT

- T-Ant dynamic Network Clustering Protocol
- ERA-Cluster: In-network resource-aware data clustering
- SSDQP: Sun SPOT Distributed Query Processor
- In-network Data Stream Processing in WSNs
- Event Processing Middleware:
 - Event Boundary Detection
 - Higher-Level Processing
- Applications:
 - Emergency Evacuation System
 - Building monitoring system

Ongoing work

"Data From The Field" Workshop, University of Sydney, 24 May 2007 - (U. Röhm)